LIFTING THEOREMS FOR TENSOR FUNCTORS ON MODULE CATEGORIES
نویسندگان
چکیده
منابع مشابه
On n-excisive functors of module categories
We give a new construction for the n-th Taylor polynomial, in the sense of Goodwillie calculus, for homotopy functors from spectra to spectra. We then use this model to classify n-excisive functors of module categories of functors with smash product (FSPs) by bi-modules of explicit FSPs. Introduction: In [Cal3], T. Goodwillie constructs a Taylor tower for functors from spectra to spectra. The l...
متن کاملFuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملUnique factorisation lifting functors and categories of linearly-controlled processes
We consider processes consisting of a category of states varying over a control category as prescribed by a unique factorisation lifting functor. After a brief analysis of the structure of general processes in this setting, we restrict attention to linearly-controlled ones. To this end, we introduce and study a notion of path-linearisable category in which any two paths of morphisms with equal ...
متن کاملfuzzy projective modules and tensor products in fuzzy module categories
let $r$ be a commutative ring. we write $mbox{hom}(mu_a, nu_b)$ for the set of all fuzzy $r$-morphisms from $mu_a$ to $nu_b$, where $mu_a$ and $nu_b$ are two fuzzy $r$-modules. we make$mbox{hom}(mu_a, nu_b)$ into fuzzy $r$-module by redefining a function $alpha:mbox{hom}(mu_a, nu_b)longrightarrow [0,1]$. we study the properties of the functor $mbox{hom}(mu_a,-):frmbox{-mod}rightarrow frmbox{-mo...
متن کاملFunctors for Alternative Categories
An attempt to define the concept of a functor covering both cases (covariant and contravariant) resulted in a structure consisting of two fields: the object map and the morphism map, the first one mapping the Cartesian squares of the set of objects rather than the set of objects. We start with an auxiliary notion of bifunction, i.e. a function mapping the Cartesian square of a set A into the Ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra and Its Applications
سال: 2011
ISSN: 0219-4988,1793-6829
DOI: 10.1142/s0219498811004471